|
|
|
| A Study of Information Dissemination Network of Altmetrics Top Papers |
| Hao Ruoyang |
| Chinese Academy of Social Sciences Evaluation Studies, Beijing 100732, China |
|
|
|
|
Abstract The current study focuses on Altmetrics top papers from 2018 to 2020, aiming at providing an in-depth analysis of the dissemination behaviors of these influential papers on Twitter and the structural characteristics of their information dissemination networks. We first employ the statistical analysis to examine the dissemination behaviors and temporal dynamics of Altmetrics top papers on Twitter. Subsequently, social network analysis methods are used to calculate key parameters of the information dissemination networks, thereby uncovering the underlying mechanisms of information spread. The study results show that the dissemination of Altmetrics top papers on Twitter exhibits pronounced temporal characteristics. The patterns of dissemination volume can be categorized into three main types: declining linear, parabolic, and multi-peaked curves. Notably, for top papers with a declining linear pattern, the change in dissemination volume follows a power-law distribution, with exponents ranging from -2 to -1. This reflects a rapid initial diffusion followed by a gradual attenuation of information spread. Regarding the sources of dissemination, the study finds that the initial spread of top papers is primarily driven by academic users and scholarly journals, who initiate the information flow by mentioning the papers. Subsequently, general users significantly amplify the dissemination through retweeting, thereby broadening the reach and impact of the papers. This indicates that the early stage of information dissemination relies on professional engagement, while the later stage benefits from broader societal participation. Social network analysis reveals that the information dissemination networks of Altmetrics top papers on Twitter exhibit both “small-world” and “core-periphery” structures. These features highlight the complexity and diversity of information dissemination, as well as the interactions among different user groups. Further analysis shows that core users within subgroups—typically researchers or journals—possess high harmonic closeness centrality, playing a dominant role in the rapid and extensive spread of papers. Meanwhile, bridge users within subgroups, characterized by high betweenness centrality, maintain the closest connections with other nodes in the network and play a crucial role in facilitating and controlling information exchange and dissemination. These bridge users act as key connectors, promoting the flow and dissemination of information across the network.The primary innovation of the current study lies in the integration of statistical and social network analysis to quantitatively examine the information dissemination networks and behaviors of Altmetrics top papers on Twitter. By investigating dissemination timelines, sources, network structures, and key users, the study uncovers the underlying patterns of information spread in Twitter’s data ecosystem. The results not only enhance our understanding of academic information dissemination on social media, but also offer new perspectives for interpreting Altmetrics indicators. Future research will further explore the generation and formation processes of underlying Altmetrics data to more comprehensively reveal the nature of these data and their impact on Altmetrics indicators. This will involve a holistic consideration of user behaviors, content characteristics, and network structures, as well as comparative studies of dissemination patterns across different disciplines and platforms. Through deeper analysis, we can better understand the complexity and diversity of academic information dissemination in the digital age and develop more effective strategies for scholarly evaluation and information diffusion.
|
|
Received: 19 September 2024
|
|
|
|
1 Priem J., Taraborelli D. & Groth P. et al., “Altmetrics: a manifesto,” http://altmetrics.org/manifesto/, 2024-09-11. 2 陈铭:《期刊利用统计与Altmetrics的兴起》,《图书与情报》2014年第1期,第12-17页。 3 Piwowar H., “Altmetrics: value all research products,” Nature, Vol. 493, No. 7431 (2013), p. 159. 4 刘春丽:《Web 2.0环境下的科学计量学:选择性计量学》,《图书情报工作》2012年第56期,第52-56页。 5 邱均平、余厚强:《替代计量学的提出过程与研究进展》,《图书情报工作》2013年第57期,第5-12页。 6 由庆斌、汤珊红:《补充计量学及应用前景》,《情报理论与实践》2013年第12期,第6-10页。 7 Eysenbach G., “Can tweets predict citations? metrics of social impact based on Twitter and correlation with traditional metrics of scientific impact,” Journal of Mechanical Internet Research, Vol. 13, No. 3 (2011), pp. 1-20. 8 Costas R., Zahedi Z. & Wouters P., “Do ‘altmetrics’ correlate with citations? extensive comparison of altmetric indicators with citations from a multidisciplinary perspective,” Journal of the Association for Information Science and Technology, Vol. 66, No. 10 (2015), pp. 2003-2019. 9 王睿、胡文静、郭玮:《高Altmetrics指标科技论文学术影响力研究》,《图书情报工作》2014年第58期,第92-98页。 10 郭飞、游滨、薛婧媛:《Altmetrics热点论文传播特性及影响力分析》,《图书情报工作》2016年第60期,第86-93页。 11 Jamali H. & Mahmod S., “Citing journal articles in social sciences blogs,” Iranian Journal of Information Processing Management, Vol. 30, No. 3 (2015), pp. 853-873. 12 刘晓娟、赵卓婧、宋婉姿:《Altmetrics在学术评价中的可用性研究综述》,《数字图书馆论坛》2017年第8期,第38-45页。 13 Alperin J., “Geographic variation in social media metrics:an analysis of Latin American journal articles,” Aslib Journal of Information Management, Vol. 67, No. 3 (2015), pp. 289-304. 14 郝若扬:《高Altmetrics 指标论文的特征分析及影响力分析》,《图书情报工作》 2018年第62期,第107-114页。 15 杨岳、王贤文:《Altmetrics十年发展综述》,《情报杂志》2021年第40期,第136-146页。 16 刘晓娟、王晨琳、吴鑫梅:《Altmetrics 热点论文的利益相关者信息交互模式研究》,《情报杂志》2022年第41期,第186-192页。 17 美]约翰·斯科特:《社会网络分析法》(第3版),刘军译,重庆:重庆大学出版社,2016年。 18 梁辰、徐健:《社会网络可视化的技术方法与工具研究》,《现代图书情报技术》2012年第5期,第7-15页。 19 陈云伟:《社会网络分析方法在情报分析中的应用研究》,《情报学报》2019年第38期,第21-28页。 20 赵蓉英、李飞:《基于社会网络分析方法的国内外信息计量比较研究》,《情报科学》2013年第31期,第7-12页。 |
|
|
|