|
|
Digital Transformation of Enterprises and Global Value Chain Embeddedness: Theory and Evidence |
Xu Xiaohui1, Tu Chengcheng1, Huang Xianhai2 |
1.School of Economics and Management, Zhejiang Sci-tech University, Hangzhou 310018, China 2.School of Economic, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract Since the reform and opening policy, China has made great achievements in the economic development by integrating itself into the global industrial system dominated by the developed countries, but it is also facing the increasingly severe dilemma of “low-end locking” in the global value chain. At the 19th National Congress of the Communist Party of China, it was clearly stated by the central government that it was imperative to facilitate the deep integration of the Internet, big data, artificial intelligence, and the real economy, as well as strengthening the empowerment of digital elements to the supply-side structural reforms, accelerating digital transformation of the enterprises throughout the time. There will be profound changes in how companies participate in the global value chains as a result of the changes in production methods. Despite this, there are few studies that analyse examine the impact of digital transformation on the embeddedness of enterprises within global value chains.Consequently, in this paper, we will explore whether and how digital transformation will affect the embeddedness of enterprises in the global value chains. Firstly, this paper introduced the theoretical framework of Hallak et al. for creating a heterogeneity model of global value chains to theoretically analyze the impact of enterprises’ digital transformation on embeddedness in the global value chain. Secondly, this paper creates an index of enterprises’ digital transformations by using web crawlers and textual analysis methods, and employs a panel fixed effect model to conduct empirical tests.The baseline results indicate that digital transformation of enterprises enhances the embedding of enterprises in the global value chain. A variety of model settings support this baseline conclusion. Additionally, this paper adopts mediation models to examine how digital transformation of enterprises improves the embeddedness of enterprises in the global value chain. The results show that reducing operating costs, expanding trade networks, and improving export product quality are the main channels through which digital transformation of enterprises enhances the embeddedness of enterprises in the global value chain. Finally, we empirically test the heterogeneity impact of enterprises’ digital transformation on their embeddedness of global value chains. It shows that the positive effect of digital transformation on the embeddedness of global value chains is significant only when the enterprises are supported by internal and external talent supply and well-equipped with digital infrastructure. Moreover, the positive effect of digital transformation on the embeddedness of global value chains is only pronounced for small scale firms; for private firms; for technology-intensive firms; for firms at growth stage; and for firms in the downstream of the industrial chain.Consequently, the digital transformation of enterprises plays a significant role in enhancing international competitiveness of enterprises. Government policies should be developed to promote the digital transformation of enterprises at a multi-level and in a systematic manner. On the one hand, while promoting the digital transformation of enterprises, the development of digital talents and digital infrastructure should also be strengthened, and a situation of coordinated promotion of various policies should be established so that the degree of digital transformation and the economic benefits of enterprises are effectively increased. On the other hand, it is also necessary to formulate and implement differentiated policies according to the needs of each enterprise. In accordance with the development characteristics of enterprises, we should formulate and implement differential policies for the digital transformation and global value chain embedding, and improve the efficiency with which policies are implemented and the accuracy with which they are implemented.
|
Received: 21 February 2023
|
|
|
|
1 刘斌、赵晓斐: 《制造业投入服务化、服务贸易壁垒与全球价值链分工》,《经济研究》2020年第7期,第159-174页。 2 吕越、罗伟、刘斌: 《融资约束与制造业的全球价值链跃升》,《金融研究》2016年第6期,第81-96页。 3 Reddy K. & Sasidharan S., “Financial constraints and global value chain participation: firm-level evidence from India,” The Journal of International Trade & Economic Development, Vol. 30, No. 5 (2021), pp. 739-765. 4 Elshaarawy R. & Ezzat R. A., “Global value chains, financial constraints, and innovation,” Small Business Economics, Vol. 61, No. 1 (2023), pp. 223-257. 5 吕越、陈泳昌: 《互联网发展与全球价值链嵌入》,《江南大学学报(人文社会科学版)》2021年第1期,第79-91页。 6 施炳展、李建桐: 《互联网是否促进了分工:来自中国制造业企业的证据》,《管理世界》2020年第4期,第130-149页。 7 段文奇、景光正: 《贸易便利化、全球价值链嵌入与供应链效率——基于出口企业库存的视角》,《中国工业经济》2021年第2期,第117-135页。 8 韩婕珺、郑乐凯、苏慧: 《管理层背景与企业全球价值链参与——来自上市公司的证据》,《产业经济研究》2020年第2期,第73-86,142页。 9 Aghion P., Jones B. F. & Jones C. I., “Artificial intelligence and economic growth,” in Agrawal A., Gans J. & Goldfarb A. (eds.), The Economics of Artificial Intelligence: An Agenda, Chicago: University of Chicago Press, 2018, pp. 237-282. 10 Hallak J. C. & Sivadasan J., “Productivity, quality and exporting behavior under minimum quality requirements,” https://mpra.ub.uni-muenchen.de/24146/1/MPRA_paper_24146.pdf, 2023-02-03. 11 Melitz M. J., “The impact of trade on intra-industry reallocations and aggregate industry productivity,” Econometrica, Vol. 71, No. 6 (2003), pp. 1695-1725. 12 戴翔、张雨、刘星翰: 《数字技术重构全球价值链的新逻辑与中国对策》,《华南师范大学学报(社会科学版)》2022年第1期,第116-129,207页。 13 张二震、戴翔: 《数字赋能中国全球价值链攀升:何以可能与何以可为》,《阅江学刊》2022年第1期,第109-118,174-175页。 14 Farboodi M., Mihet R. & Philippon T. et al., “Big data and firm dynamics,” AEA Papers and Proceedings, Vol. 109 (2019), pp. 38-42. 15 Goldfarb A. & Tucker C., “Digital economics,” Journal of Economic Literature, Vol. 57, No. 1 (2019), pp. 3-43. 16 Freund C. L. & Weinhold D., “The effect of the internet on international trade,” Journal of International Economics, Vol. 62, No. 1 (2004), pp. 171-189. 17 Li F., Nucciarelli A. & Roden S. et al., “How smart cities transform operations models: a new research agenda for operations management in the digital economy,” Production Planning & Control, Vol. 27, No. 6 (2016), pp. 514-528. 18 马述忠、任婉婉、吴国杰: 《一国农产品贸易网络特征及其对全球价值链分工的影响——基于社会网络分析视角》,《管理世界》2016年第3期,第60-72页。 19 Kali R., Méndez F. & Reyes J., “Trade structure and economic growth,” The Journal of International Trade & Economic Development, Vol. 16, No. 2 (2007), pp. 245-269. 20 Arora V. & Vamvakidis A., “How much do trading partners matter for economic growth?” IMF Staff Papers, Vol. 52, No. 1 (2005), pp. 24-40. 21 Reyes J., Schiavo S. & Fagiolo G., “Assessing the evolution of international economic integration using random walk betweenness centrality: the cases of East Asia and Latin American,” Advances in Complex Systems, Vol. 11, No. 5 (2008), pp. 685-702. 22 Gnyawali D. R. & Madhavan R., “Cooperative networks and competitive dynamics: a structural embeddedness perspective,” Academy of Management Review, Vol. 26, No. 3 (2001), pp. 431-445. 23 Adams F. G. & Behrman J. R., Commodity Exports and Economic Development: The Commodity Problem and Policy in Developing Countries, Lexington: Lexington Books, 1982. 24 Gereffi G., “Economic upgrading in global value chains,” in Ponte S., Gereffi G. & Raj-Reichert G. (eds.), Handbook on Global Value Chains, Cheltenham: Edward Elgar Publishing, 2019, pp. 240-254. 25 Michalos G., Karagiannis P. & Makris S. et al., “Augmented Reality (AR) applications for supporting human-robot interactive cooperation,” Procedia CIRP, Vol. 41 (2016), pp. 370-375. 26 林晨、陈小亮、陈伟泽等: 《人工智能、经济增长与居民消费改善:资本结构优化的视角》,《中国工业经济》2020年第2期,第61-83页。 27 Banh H. T., Wingender P. & Gueye C. A., “Global value chains and productivity: micro evidence from Estonia,” 2020-07-03, https://www.imf.org/en/Publications/WP/Issues/2020/07/03/Global-Value-Chains-and-Productivity-Micro-Evidence-from-Estonia-49376, 2023-03-06. 28 Upward R., Wang Z. & Zheng J. H., “Weighing China’s export basket: the domestic content and technology intensity of Chinese exports,” Journal of Comparative Economics, Vol. 41, No. 4 (2013), pp. 527-543. 29 苏丹妮、盛斌、邵朝对等: 《全球价值链、本地化产业集聚与企业生产率的互动效应》,《经济研究》2020年第3期,第100-115页。 30 吴非、胡慧芷、林慧妍等: 《企业数字化转型与资本市场表现——来自股票流动性的经验证据》,《管理世界》2021年第7期,第130-144,10页。 31 张勋、杨桐、汪晨等: 《数字金融发展与居民消费增长:理论与中国实践》,《管理世界》2020年第11期,第48-63页。 32 张叶青、陆瑶、李乐芸: 《大数据应用对中国企业市场价值的影响——来自中国上市公司年报文本分析的证据》,《经济研究》2021年第12期,第42-59页。 33 张杰、陈志远、刘元春: 《中国出口国内附加值的测算与变化机制》,《经济研究》2013年第10期,第124-137页。 34 李沁洋、赵阳、胡珺: 《董事高管责任保险、财务弹性与企业投资效率》,《浙江工商大学学报》2018年第2期,第85-98页。 35 阳建辉、马潇萌、李根生: 《媒体监督,流动性风险与失责行为的成本效应》,《软科学》2015年第9期,第68-71,80页。 36 Khandelwal A. K., Schott P. K. & Wei S. J., “Trade liberalization and embedded institutional reform: evidence from Chinese exporters,” American Economic Review, Vol. 103, No. 6 (2013), pp. 2169-2195. 37 Broda C. & Weinstein D. E., “Globalization and the gains from variety,” The Quarterly Journal of Economics, Vol. 121, No. 2 (2006), pp. 541-585. 38 Dranove D., Forman C. & Goldfarb A. et al., “The trillion dollar conundrum: complementarities and health information technology,” American Economic Journal: Economic Policy, Vol. 6, No. 4 (2014), pp. 239-270. 39 左鹏飞、陈静: 《高质量发展视角下的数字经济与经济增长》,《财经问题研究》2021年第9期,第19-27页。 40 刘然: 《后疫情时代中小企业数字化转型之路》,《学术前沿》2020年第13期,第104-107页。 41 阳镇、陈劲、凌鸿程: 《经历越多必然创新吗?——私营企业家职业经历多样性、政策感知与企业创新》,《管理工程学报》2022年第6期,第30-45页。 42 蔡延泽、龚新蜀、赵贤: 《数字经济发展对企业全要素生产率影响的实证检验》,《统计与决策》2022年第15期,第98-103页。 43 鲁桐、党印: 《公司治理与技术创新:分行业比较》,《经济研究》2014年第6期,第115-128页。 44 Dickinson V., “Cash flow patterns as a proxy for firm life cycle,” The Accounting Review, Vol. 86, No. 6 (2011), pp. 1969-1994. 45 Antras P., Chor D. & Fally T. et al., “Measuring the upstreamness of production and trade flows,” Economic Review, Vol. 102, No. 3 (2012), pp. 412-416. |
|
|
|