|
|
A Study of the Heterogeneity Effect of Robot Penetration on Urban and Rural Income from the Perspective of Labor Mobility |
Ma Shuzhong, Wu Peng, Pan Gangjian |
China Academy of Digital Trade, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract In recent years, China’s working-age population has started to decrease, resulting in a gradual rise in labor costs. To cope with this increase, Chinese companies have widely installed digital technologies such as computers, automated equipment and industrial robots, leading to a shift from the demographic dividend to a technology dividend. Previous studies have suggested that labor will continue to flow from the traditional agricultural sector to the modern industrial sector due to higher wages in the modern economic sector. However, recent statistical data show that while rural labor is still flowing to cities, it is not concentrated in the urban industrial sector, raising questions about the destination of this rural labor force and its relevance to the popularity of robotics.While there is a considerable amount of literature discussing the income distribution effect of labor mobility between urban and rural areas, there is limited research on the impact of digital technologies such as robots and artificial intelligence. As the Chinese economy is divided into urban and rural areas with differences in occupational categories, there is inevitably urban-rural heterogeneity in the impact of robotics on income distribution. To provide clear answers to these questions, this study verifies the difference in the impact of robots on urban and rural wages through empirical tests based on a task-based model framework.The study proposes four propositions. Proposition 1 asserts that robot penetration may facilitate labor mobility from rural to urban areas by increasing the relative wages of manual versus routine tasks. This effect is most pronounced when the labor force flows completely between urban and rural areas, resulting in higher wages for rural labor. However, in cases where labor is completely immobile between urban and rural areas, robot penetration may instead lower rural labor wages. When the labor force flows incompletely between urban and rural areas, the overall impact on wages depends on the relative strength of the aforementioned effects. Proposition 2 posits that the intersectoral transfer of labor within cities may help mitigate the potentially negative impact of robot penetration. Proposition 3 suggests that the impact of robot penetration is primarily evident in urban areas, where it depends on the relative strength of the complementary effect on abstract tasks and the substitution effect on routine tasks. Finally, Proposition 4 predicts that the wages of low-skilled labor in cities are likely to be reduced as a result of robot penetration.The study utilizes data from the China Family Panel Studies (CFPS), the International Federation of Robotics (IFR), and the China Stock Market & Accounting Research Database (CSMAR) to distinguish the difference in the benefit between urban and rural samples and to verify that the difference in coefficients between samples is significant using Fisher’s Permutation Test (FPT). We merge the above three data sets according to the industry and province of the respondents, and the final sample obtained contains 2014, 2016 and 2018.Benchmark regression results show that robot penetration has a significantly negative effect on wages. This result is consistent with the findings observed by Acemoglu et al. (2018) for the United States and Faber et al. (2020) for Mexico, where the substitution effect of robot penetration is larger than the productivity effect. After distinguishing between urban and rural samples, we find that robot penetration has a greater negative impact on urban wages but a non-significant impact on rural wages. This finding remains robust after a series of robustness tests. To mitigate the bias arising from endogeneity, we constructed instrumental variables using the number of robots in the Czech Republic, and the results prove that our findings are robust again. Mechanistic analysis shows that robot penetration facilitates labor flow from rural to urban areas and contributes to higher wages of mobile labor. Furthermore, it allows for labor migration from manufacturing to other service sectors, leading to changes in urban-rural income distribution. While robots replace repetitive labor in manufacturing and create a “crowding-out effect” on low-skilled labor, the mobility of labor across sectors can help alleviate the negative effects of robot penetration.This study contributes to the existing literature by providing a systematic examination of the impact of robot penetration on wages in urban and rural areas of China using individual and household survey data. Additionally, the study provides a theoretical model of the impact of robot penetration on urban and rural wages exploiting the task-based model and uncovers potential mechanisms of robot penetration affecting urban and rural wages from the perspective of cross-regional mobility and cross-sectoral transfers. Contrary to the majority of studies that are pessimistic about the employment substitution effect of robots, this study argues that robot penetration can have a positive effect on rural labor when labor can move adequately between urban and rural areas.
|
Received: 14 June 2022
|
|
|
|
1 钞小静、沈坤荣: 《城乡收入差距、劳动力质量与中国经济增长》,《经济研究》2014年第6期,第30-43页。 2 张鹏、张平、袁富华: 《中国就业系统的演进、摩擦与转型——劳动力市场微观实证与体制分析》,《经济研究》2019年第12期,第4-20页。 3 余玲铮、魏下海、吴春秀: 《机器人对劳动收入份额的影响研究——来自企业调查的微观证据》,《中国人口科学》2019年第4期,第114-125,128页。 4 夏怡然、陆铭: 《城市间的“孟母三迁”——公共服务影响劳动力流向的经验研究》,《管理世界》2015年第10期,第78-90页。 5 周云波: 《城市化、城乡差距以及全国居民总体收入差距的变动——收入差距倒U形假说的实证检验》,《经济学(季刊)》2009年第4期,第1239-1256页。 6 周兴、张鹏: 《代际间的职业流动与收入流动——来自中国城乡家庭的经验研究》,《经济学(季刊)》2015年第1期,第351-372页。 7 程名望、史清华、Jin Yanhong等: 《农户收入差距及其根源:模型与实证》,《管理世界》2015年第7期,第17-28页。 8 李建军、韩珣: 《普惠金融、收入分配和贫困减缓——推进效率和公平的政策框架选择》,《金融研究》2019年第3期,第129-148页。 9 刘晓光、张勋、方文全: 《基础设施的城乡收入分配效应:基于劳动力转移的视角》,《世界经济》2015年第3期,第145-170页。 10 余泳泽、潘妍: 《高铁开通缩小了城乡收入差距吗?——基于异质性劳动力转移视角的解释》,《中国农村经济》2019年第1期,第79-95页。 11 刘守英、王一鸽: 《从乡土中国到城乡中国——中国转型的乡村变迁视角》,《管理世界》2018年第10期,第128-146,232页。 12 陈纯槿、李实: 《城镇劳动力市场结构变迁与收入不平等:1989—2009》,《管理世界》2013年第1期,第45-55页。 13 万海远、李实: 《户籍歧视对城乡收入差距的影响》,《经济研究》2013年第9期,第43-55页。 14 陈斌开、林毅夫: 《发展战略、城市化与中国城乡收入差距》,《中国社会科学》2013年第4期,第81-102,206页。 15 Acemoglu D. & Restrepo P., “The race between man and machine: implications of technology for growth, factor shares, and employment,” American Economic Review, Vol. 108, No. 6 (2018), pp. 1488-1542. 16 王永钦、董雯: 《机器人的兴起如何影响中国劳动力市场?——来自制造业上市公司的证据》,《经济研究》2020年第10期,第159-175页。 17 Autor D. H. & Murnane L., “The skill content of recent technological change: an empirical exploration,” The Quarterly Journal of Economics, Vol. 118, No. 4 (2003), pp. 1279-1333. 18 Autor D. H., Katz L. F. & Kearney M. S., “The polarization of the U.S. labor market,” American Economic Review, Vol. 96, No. 2 (2006), pp. 189-194. 19 Graetz G. & Michaels G., “Robots at work,” Review of Economics and Statistics, Vol. 100, No. 5 (2018), pp. 753-768. 20 Acemoglu D. & Restrepo P., “Robots and jobs: evidence from U.S. labor markets,” Journal of Political Economy, Vol. 128, No. 6 (2020), pp. 2188-2244. 21 闫雪凌、朱博楷、马超: 《工业机器人使用与制造业就业:来自中国的证据》,《统计研究》2020年第1期,第74-87页。 22 Goos M., Manning A. & Salomons A., “Job polarization in Europe,” American Economic Review, Vol. 99, No. 2 (2009), pp. 58-63. 23 Autor D. H. & Dorn D., “The growth of low-skill service jobs and the polarization of the US labor market,” American Economic Review, Vol. 103, No. 5 (2013), pp. 1553-1597. 24 余玲铮、魏下海、孙中伟等: 《工业机器人、工作任务与非常规能力溢价——来自制造业“企业—工人”匹配调查的证据》,《管理世界》2021年第1期,第47-59,4页。 25 王文、牛泽东、孙早: 《工业机器人冲击下的服务业:结构升级还是低端锁定》,《统计研究》2020年第7期,第54-65页。 26 郭熙保: 《中国共产党工业化道路理论的学理性探析》,《中国工业经济》2022年第1期,第19-33页。 27 钟粤俊、陆铭、奚锡灿: 《集聚与服务业发展——基于人口空间分布的视角》,《管理世界》2020年第11期,第35-49页。 28 韩军、刘润娟、张俊森: 《对外开放对中国收入分配的影响——“南方谈话”和“入世”后效果的实证检验》,《中国社会科学》2015年第2期,第24-40,202-203页。 29 王修华、赵亚雄: 《数字金融发展是否存在马太效应?——贫困户与非贫困户的经验比较》,《金融研究》2020年第7期,第114-133页。 30 连玉君、廖俊平: 《如何检验分组回归后的组间系数差异?》,《郑州航空工业管理学院学报》2017年第6期,第97-109页。 31 张勋、万广华、张佳佳等: 《数字经济、普惠金融与包容性增长》,《经济研究》2019年第8期,第71-86页。 32 Faber M., “Robots and reshoring: evidence from Mexican labor markets,” Journal of International Economics, Vol. 127 (2020), pp. 1-34. 33 孙早、侯玉琳: 《工业智能化与产业梯度转移:对“雁阵理论”的再检验》,《世界经济》2021年第7期,第29-54页。 |
|
|
|