|
|
Status and Participation Methods of Legal Experts in Judicial Digitization: A Case Study of the Procuratorial Organs |
Zhou Xiang |
Guanghua Law School, Zhejiang University, Hangzhou 310008, China |
|
|
Abstract The role of legal experts ought to attach much more importance in the light of judicial digitization. Procuratorial organs, for example, are banking on new digital technologies to fulfill their missions in the new era. The work of procuratorial organs in China focuses on legal supervision, takes case handling as the carrier, power restriction and rights protection as the goal, and power execution as the method.The shortcomings of the traditional optimization method of procuratorial organs lie in the lack of large-scale integration of existing resources, the over-reliance on external forces of existing tools, and the excessive time of institutional power expansion. To make up for the above deficiencies, it is imperative for procuratorial organs to make good use of digital technology so that legal experts can participate in the digitalization of judicature substantially.There are three prerequisites for legal experts to take part in judicial digitization substantially. The first is that procuratorial digitalization has stepped into the era of knowledge-assisted intelligence, with the hardware and software foundation of a unified case handling system, judicial big data based on case data, and gradually formed digital procuratorial theory. The second is to be able to switch between legal thinking and digital thinking smoothly. On the premise of mastering digital thinking, legal experts can integrate their professional experience into the digital thinking model. The third is to integrate various elements of professional scenarios into a framework. It means integrating legal basis, professional experience, and legal theory into the development of the model.The key links that legal experts participate in include the definition of professional scenes, the design of model schemes, and the construction of data sets. Legal experts with sufficient experience in handling cases first determine the scene and knowledge requirements of the procuratorial profession, transforming the difficulties in the case handling scene into the model tasks to be developed. In addition, through the dependency of multiple sub-tasks in the same professional scene, the optimization of the input feature system and the enhancement of the interpretability of the model participate in the model design and performance improvement. Finally, optimize the dataset used for model training. At this stage, the main role of legal experts is to construct professional scenes and diversified data labels for digital technology knowledge production.The participation of legal experts is conducive to producing valuable outcomes such as case clues, case patterns, and result predictions. Case clue is the beginning of legal supervision, which often restricts the activation of external supervision such as investigation supervision, trial supervision, and public interest litigation. Additionally, digital technology can help realize the transformation from individual cases supervision to class case governance supervision. Digital technology represented by machine learning is skilled at predicting results, which can assist judicial personnel to improve the accuracy of judgment, reduce the risk of misjudgment and provide more information for judgment.The aforementioned methodologies have been tested in public interest litigation, social governance, detention necessity review, and other scenarios. The methodological research on the participation of legal experts in the digitalization of procuratorial work can also provide reference for other public authorities, who also expect to carry out social governance more effectively with the help of digital technology. The more effective and safe use of digital technology to modernize social governance capabilities is a contemporary proposition facing public service departments in China. Digital technology is an essential tool for improving governance capacity, but it also requires those who exercise it to have the ability to harness it.As a result of the research on the axiology of digital technology tools, this study explores the systematic approach of procuratorial organs on how to use digital technology effectively. The present study takes the procuratorial organs as the case to study the method of introducing domain knowledge, but this methodology has universal applicability. For instance, the methodology applies to how to develop digital models that are closely related to specific scenarios and highlight the value of domain expert participation. It can also be applied to the typing of outputs to determine which model outputs are valuable for social governance. The methodology can also implement the participation of domain experts into the workflow of professional scenario definition, model scheme design, and data set construction.
|
Received: 12 November 2021
|
|
|
|
1 中共最高人民检察院党组: 《加强新时代检察机关法律监督工作 更实担起党和人民赋予的更重责任》,《人民日报》2021年9月2日,第6版。 2 朱孝清: 《国家监察体制改革后检察制度的巩固与发展》,《法学研究》2018年第4期,第3-19页。 3 苗生明: 《新时代检察权的定位、特征与发展趋向》,《中国法学》2019年第6期,第224-240页。 4 邱学强: 《恢复重建以来检察机关内设机构改革的历史经验与启示》,《检察日报》2018年11月13日,第3版。 5 魏晓娜: 《依法治国语境下检察机关的性质与职权》,《中国法学》2018年第1期,第284-302页。 6 周新: 《检察机关内设机构改革的逻辑与面向——权力属性视角下的实践分析》,《当代法学》2020年第2期,第108-118页。 7 路旸: 《“检察主导”的内涵辨析、权力构成与实践趋势》,《中国政法大学学报》2021年第3期,第253-265页。 8 张建伟: 《检察机关主导作用论》,《中国刑事法杂志》2019年第6期,第30-41页。 9 南茂林、宋琴琴: 《让数据开口说话 让问题浮出水面》,《检察日报》2021年8月11日,第5版。 10 樊华中: 《法律监督权的刚性提升症结与再行路径——职务犯罪侦查权移转监察委后的监督方略》,《重庆理工大学学报(社会科学)》2019年第1期,第117-125页。 11 杨焘、杨宁: 《现实与理想:检察机关智能建设现状考察与未来展望——以Z市G区检察院智慧检务试点为分析样本》,《西南政法大学学报》2021年第2期,第104-119页。 12 左卫民: 《从通用化走向专门化:反思中国司法人工智能的运用》,《法学论坛》2020年第2期,第17-23页。 13 孙晓勇: 《司法大数据在中国法院的应用与前景展望》,《中国法学》2021年第4期,第123-144页。 14 王禄生: 《论法律大数据“领域理论”的构建》,《中国法学》2020年第2期,第256-279页。 15 张建锋: 《数字政府2.0数据智能助力治理现代化》,北京:中信出版社,2019年。 16 邹碧华: 《要件审判九步法》,北京:法律出版社,2010年。 17 美]劳伦斯·鲍姆: 《法官的裁判之道》,李国庆译,北京:北京大学出版社,2014年。 18 张明楷: 《从生活事实中发现法》,《法律适用》2004年第6期,第31-35页。 19 陈玉琨、汤晓鸥: 《人工智能基础》,上海:华东师范大学出版社,2018年。 20 李航: 《统计学学习方法》,北京:清华大学出版社,2019年。 21 美]加文·海克: 《scikit-learn机器学习》(第2版),张浩然译,北京:人民邮电出版社,2019年。 22 Chalkidis I. & Kampas D., “Deep learning in law: early adaptation and legal word embeddings trained on large corpora,” Artificial Intelligence and Law, Vol. 27, No. 2 (2019), pp. 171-198. 23 雷磊: 《法教义学与法治:法教义学的治理意义》,《法学研究》2018年第5期,第58-75页。 24 陈天昊、邵建树、王雪纯: 《检察行政公益诉讼制度的效果检验与完善路径 基于双重差分法的实证分析》,《中外法学》2020年第5期,第1328-1352页。 25 周翔: 《智慧法院的生成机制与未来发展趋势》,《西安交通大学学报(社会科学版)》2021年第3期,第131-140页。 26 Zhong H., Xiao C. & Guo Z. et al., “Overview of CAIL2018: legal judgment prediction competition,” 2018-10-13, https://arxiv.org/pdf/1810.05851, 2022-04-17. 27 Li J., Zhang G. & Yu L. et al., “Research and design on cognitive computing framework for predicting judicial decisions,” Journal of Signal Processing Systems, Vol. 91, No. 10 (2019), pp. 1159-1167. 28 Li S., Liu B. & Ye L. et al., “Element-aware legal judgment prediction for criminal cases with confusing charges,” https://ieeexplore.ieee.org/document/8995428#citations, 2020-02-13. 29 王越: 《量刑规范性水平的实证检验:以故意伤害罪为例的分析》,《法学家》2020年第6期,第69-83页。 30 张雪樵: 《检察公益诉讼的“智慧之门”》,《检察日报》2018年4月9日,第3版。 31 李成、赵维刚: 《困境与突破:行政公益诉讼线索发现机制研究》,《四川师范大学学报(社会科学版)》2018年第4期,第54-61页。 32 翁晓斌、周翔: 《公益诉讼试点中的“行主民辅”现象研究——兼论检察机关在两种案件类型中的不同担当》,《社会科学战线》2017年第11期,第218-229页。 33 何莹、莫斯敏、冯吟蕾: 《公益诉讼大数据运用路径探析》,《中国检察官》2020年第3期,第16-21页。 34 熊秋红: 《能动司法检察是法治理念的深化》,《检察日报》2021年8月16日,第3版。 35 Sugie N. F., “Utilizing smartphones to study disadvantaged and hard-to-reach groups,” Sociological Methods & Research, Vol. 47, No. 3 (2016), pp. 458-491. |
|
|
|