Credit Technology, Soft Information and Appropriate Credit Line: An Empirical Study Based on 1,493 Reports of Micro Credit Surveys
Zhu Yanjian1, He Chen2
1.School of Economics, Zhejiang University, Hangzhou 310058, China 2.School of Economics and Management, Zhejiang University of Science and Technology, Hangzhou 310023, China
Abstract:The banking sector thinks that micro borrowers do not have much experience in getting loans from banks and cannot provide collateral, guarantee or financial statement in the process of applying for loans. It is difficult for banks to decide whether they should lend to micro borrowers because they are not sure whether they can repay on time. Still, scholars focus their studies on the breach of loan contracts of micro borrowers. They think that it is difficult for banks to acquire, identify, and process the soft information of micro borrowers because it is high in cost, low in income and big in risks. In fact, difficulties in lending and borrowing from both sides co-exist at the same time. Academic studies should not ignore the fact that different types of banks have their own advantages in dealing with different types of information. Micro banks, rather than other types of commercial banks, might do well in dealing with the soft information of micro borrowers. It might be a good way out to get out of the dilemma of the above obstacles by encouraging small and micro banks to grant appropriate credit lines to micro borrowers with real production and operation businesses.Specifically, this paper constructs a theoretical model on micro borrower’s credit line, which creatively introduces soft information and credit technology into the equation system and tries to find a solution to an appropriate credit line by maximizing the utility of both suppliers and demanders of micro credits. An empirical analysis is made based on the production and operation micro credit data manually collected from the micro credit centers of those banks in cooperation with the Zhejiang University AFR micro credit project. Theoretical research shows that there are appropriate credit lines for any micro borrowers who have real production and operation loan demands. Empirical research shows that the soft information of micro borrowers and the credit technical level of customer managers play a significant role in determining the appropriate credit lines. For micro borrowers with general operating conditions or insufficient assets, their soft information has a greater effect on the determination of the appropriate credit lines. For micro borrowers with general character or original ecology, the credit technical level of the customer manager has a decisive role in determining the appropriate credit lines.This paper first contributes to the literature in the following ways: First, the study finds that banks should provide appropriate credit lines to micro borrowers with real business operations. For banks, the issue of how much to lend is more important than that of whether to lend or not. Second, the determinants of appropriate credit lines include the credit technical levels of the supply side, while previous studies mostly start from the demand side. Third, the paper demonstrates that the credit technology improvement of customer managers in small and micro banks is good for soft information mining and helps increase the appropriate credit line to meet the credit demands of micro borrowers without causing the risk of default. Four, unlike previous papers, it differentiates clearly the distinctive differences of micro credit from small credit in terms of credit line, final purposes and the entity of supply and demand.The paper suggests that small and micro banks should improve in the following two aspects. On the one hand, banks should innovate on the policy and procedures of the employee training system. They can improve credit technology by establishing a craftsman-style internal training system for new and young employees. On the other hand, banks should expand their soft information collection channels regarding micro borrowers. With the help of neighborhood committees, village committees, relevant government departments and banks can improve the availability and reliability of the soft information of those potential clients by developing an agriculture-related database and integrating the unique information about the permanent residents and villagers. The information to be counted on includes such factors as the alternative ways of collecting money, neighborhood relationship, reputation and popularity, willingness to pay utility bills, property management fees, and penalty for traffic violations.
朱燕建, 何琛. 信贷技术、软信息与适宜贷款额度[J]. 浙江大学学报(人文社会科学版), 2022, 52(7): 16-34.
Zhu Yanjian, He Chen. Credit Technology, Soft Information and Appropriate Credit Line: An Empirical Study Based on 1,493 Reports of Micro Credit Surveys. JOURNAL OF ZHEJIANG UNIVERSITY, 2022, 52(7): 16-34.
1 樊纲: 《克服信贷萎缩与银行体系改革——1998年宏观经济形势分析与1999年展望》,《经济研究》1999年第1期,第5-10,54页。 2 张杰: 《民营经济的金融困境与融资次序》,《经济研究》2000年第4期,第3-10,78页。 3 林毅夫、李永军: 《中小金融机构发展与中小企业融资》,《经济研究》2001年第1期,第10-18,53,93页。 4 史晋川、严谷军: 《经济发展中的金融深化——以浙江民营金融发展为例》,《浙江大学学报(人文社会科学版)》2001年第6期,第70-76页。 5 Sutherland A., “Does credit reporting lead to a decline in relationship lending? evidence from information sharing technology,” Journal of Accounting and Economics, Vol. 66, No. 1 (2018), pp. 123-141. 6 Liberti J. M. & Petersen M. A., “Information: hard and soft,” The Review of Corporate Finance Studies, Vol. 8, No. 1 (2019), pp. 1-41. 7 罗兴、吴本健、马九杰: 《农村互联网信贷:“互联网+”的技术逻辑还是“社会网+”的社会逻辑?》,《中国农村经济》2018年第8期,第2-16页。 8 盛天翔、范从来: 《金融科技与小微企业信贷供给述评:机制、实践与问题》,《现代经济探讨》2020年第6期,第39-44页。 9 Bajaj M., Chan Y. & Dasgupta S., “The relationship between ownership, financing decisions and firm performance: a signaling model,” International Economic Review, Vol. 39, No. 3 (1998), pp. 723-744. 10 Jiménez G., Lopez J. A. & Saurina J., “Empirical analysis of corporate credit lines,” The Review of Financial Studies, Vol. 22, No. 12 (2009), pp. 5069-5098. 11 应千伟、罗党论: 《政治关联程度与授信额度获取》,《金融学季刊》2015年第2期,第151-163页。 12 彭克强、刘锡良: 《农民增收、正规信贷可得性与非农创业》,《管理世界》2016年第7期,第88-97页。 13 王性玉、任乐、赵辉等: 《农户信誉特征、还款意愿传递与农户信贷可得——基于信号传递博弈的理论分析和实证检验》,《管理评论》2019年第5期,第77-88页。 14 Stiglitz J. E. & Weiss A., “Credit rationing in markets with imperfect information,” American Economic Review, Vol. 71, No. 3 (1981), pp. 393-410. 15 Udell G. F. & Berger A. N., “Line of credit and relationship lending in small firm finance,” Journal of Business, Vol. 68, No. 3 (1995), pp. 351-381. 16 林毅夫、孙希芳: 《信息、非正规金融与中小企业融资》,《经济研究》2005年第7期,第35-44页。 17 尹志超、甘犁: 《信息不对称、企业异质性与信贷风险》,《经济研究》2011年第9期,第121-132页。 18 Berger A. N. & Udell G. F., “Small business credit availability and relationship lending: the importance of bank organisational structure,” The Economic Journal, Vol. 477, No. 112 (2002), pp. 32-53. 19 张捷: 《中小企业的关系型借贷与银行组织结构》,《经济研究》2002年第6期,第32-37,54,94页。 20 Beatriz M., Coffinet J. & Nicolas T., “Relationship lending and SMEs’ funding costs over the cycle: why diversification of borrowing matters,” https://doi.org/10.1016/j.jbankfin.2018.12.007, 2021-09-24. 21 胡志浩、李勍: 《关系型融资研究新进展》,《经济学动态》2019年第10期。第132-146页。 22 DeYoung R., Gron A. & Torna G. et al., “Risk overhang and loan portfolio decisions: small business loan supply before and during the financial crisis,” The Journal of Finance, Vol. 70, No. 6 (2015), pp. 2451-2488. 23 Beck T., Degryse H. & Haas R. D. et al., “When arm’s length is too far: relationship banking over the credit cycle,” Journal of Financial Economics, Vol. 127, No. 1 (2018), pp. 174-196. 24 张一林、樊纲治: 《信贷紧缩、企业价值与最优贷款利率》,《经济研究》2016年第6期,第71-82页。 25 Stein J. C., “Information production and capital allocation: decentralized versus hierarchical firms,” The Journal of Finance, Vol. 57, No. 5 (2002), pp. 1891-1921. 26 Canales R. & Nanda R., “A darker side to decentralized banks: market power and credit rationing in SME lending,” Journal of Financial Economics, Vol. 105, No. 2 (2011), pp. 353-366. 27 Hatice J., “The new paradigm in small and medium-sized enterprise finance: evidence from Turkish banks,” Iktisat Isletme ve Finans, Vol. 29, No. 335 (2014), pp. 45-72. 28 贺力平: 《克服金融机构与中小企业之间的不对称信息障碍》,《改革》1999年第2期,第14-16,26页。 29 赵志刚、巴曙松: 《我国村镇银行的发展困境与政策建议》,《新金融》2011年第1期,第40-44页。 30 殷孟波、翁舟杰、梁丹: 《解读中小企业贷款难理论谜团的新框架——租值耗散与交易费用视角》,《金融研究》2008年第5期,第103-110页。 31 陈一洪: 《城商行社区化经营的理论与案例分析》,《武汉金融》2012年第2期,第40-42页。 32 程超、林丽琼: 《银行规模、信贷技术与小微企业融资?——对“小银行优势”理论的再检验》,《经济科学》2015年第4期,第54-66页。 33 黄宪、叶晨、杜雪: 《竞争、微金融技术与银行信贷业务边界的移动》,《金融监管研究》2016年第9期,第1-24页。 34 刘畅、刘冲、马光荣: 《中小金融机构与中小企业贷款》,《经济研究》2017年第8期,第65-77页。 35 程惠霞: 《普惠金融发展新路径:赋权与使能驱动》,《华南农业大学学报(社会科学版)》2020年第5期,第15-26页。 36 严谷军、何琛、何嗣江等: 《AFR微贷项目运行与案例》,杭州:浙江大学出版社,2021年。 37 何广文: 《从农村居民资金借贷行为看农村金融抑制与金融深化》,《中国农村经济》1999年第10期,第42-48页。 38 黄祖辉、刘西川、程恩江: 《中国农户的信贷需求:生产性抑或消费性——方法比较与实证分析》,《管理世界》2007年第3期,第73-80页。 39 王定祥、田庆刚、李伶俐等: 《贫困型农户信贷需求与信贷行为实证研究》,《金融研究》2011年第5期,第124-138页。 40 Meng X. J., “Analyst reputation, communication and information acquisition,” Journal of Accounting Research, Vol. 53, No. 1 (2015), pp. 119-173. 41 Cole R. A., Goldberg L. G. & White L. J., “Cookie cutter vs. character: the micro structure of small business lending by large and small banks,” Journal of Financial and Quantitative Analysis, Vol. 39, No. 2 (2004), pp. 227-251. 42 董晓林、陶月琴、程超: 《信用评分技术在县域小微企业信贷融资中的应用——基于江苏县域地区的调查数据》,《农业技术经济》2015年第10期,第107-116页。 43 Herzenstein M., Sonenshein S. & Dholakia U. M., “Tell me a good story and I may lend you money: the role of narratives in peer-to-peer lending decisions,” Journal of Marketing Research, Vol. 48 (2011), pp. 138-149. 44 Godbillon-Camus B. & Godlewski C., “Credit risk management in banks: hard information, soft information and manipulation,” MPRA Paper, Vol. 55, No. 1-6 (2005), pp. 114-125. 45 周月书、王雨露、彭媛媛: 《农业产业链组织、信贷交易成本与规模农户信贷可得性》,《中国农村经济》2019年第4期,第41-54页。 46 廖红君、樊纲治、代春: 《关系型借贷视角下购房融资方式与家庭创业行为——基于2017年中国家庭金融调查的实证研究》,《金融研究》2020年第7期,第153-171页。 47 王性玉、任乐、赵辉: 《社会资本对农户信贷配给影响的分类研究——基于河南省农户的数据检验》,《经济问题探索》2016年第9期,第172-181页。