Seeking Certainty in Uncertainty: Could Enterprises’ Intelligent Transformation Help to Reduce the Perception of Trade Policy Uncertainty?
Song Huasheng1,2,3, Cao Tingting2, Zhou Jianjun2,3
1.CRPE, Zhejiang University, Hangzhou 310058, China 2.School of Economics, Zhejiang University, Hangzhou 310058, China 3.Institute of State System Research, Zhejiang University,Hangzhou 310058, China
Abstract:Currently, Chinese firms face the primary challenge of trade policy uncertainty (TPU) as a significant external risk. The occurrence of events such as the US-China trade war and the Russia-Ukraine conflict has instigated anti-globalization sentiments, leading to increased trade barriers and protectionist measures. This intricate international economic landscape severely impacts the operational landscape of Chinese firms. The perception of TPU refers to the extent to which a firm feels the impact of TPU. Increased TPU generally affects firm decision-making by disrupting corporate expectations, thereby negatively impacting corporate operations. The emergence of artificial intelligence has not only spearheaded a new wave of technological revolution but also provided enterprises with new strategic opportunities to address TPU. Through intelligent operations and big data predictions, enterprises can achieve intelligent transformation, which not only reduces costs but also enhances the efficiency of various stages in the operational process, thereby improving the transparency and certainty of the business environment.Therefore, the pivotal research question emerges: How can firms achieve intelligent transformation to approach certainty amid an environment of uncertainty? Utilizing the annual reports of public listed firms from 2012 to 2020, this study employs textual analysis and machine learning tools to quantify the perception of TPU and the degree of intelligent transformation, both of which withstand rigorous effectiveness tests. Subsequently, the study empirically tests the impact of company intelligent transformation on the companies’ perception of TPU and unravels its underlying mechanisms. Empirical evidence indicates that intelligent transformation of firms can significantly reduce the perceived TPU, which has been consistently upheld through various robustness checks. To mitigate potential endogeneity concerns, the study adopts instrumental variable two-stage least-squares regression estimator and leverages exogenous policy shocks as quasi-natural experiments, ensuring that the identified relationship can be credibly interpreted as causal. The mechanism analysis further elucidates that intelligent transformation achieves this reduction by cost-saving effects, such as diminishing adjustment cost and information asymmetry, and by efficiency enhancement effect, including improving efficiency of organizational collaboration, management decision, production and marketing. Heterogeneity analysis suggests that the effect of intelligence transformation on the perception of TPU is more pronounced for non-state-owned companies, those firms in technology-intensive industries, as well as firms situated in the eastern and southern regions of China. Extensive analysis further underscore that intelligent transformation can effectively enhance the positive affective tendencies of management, which is important for improving the competitive advantage of firms and facilitating market expansion. Furthermore, the effect of intelligent transformation on the perception of TPU is more prominent for firms with higher risk transfer ability.The main contributions of this study are as follows first, this study refines the indicators for the perception of TPU and the degree of intelligent transformation at the firm level, thereby addressing the existing measurement inadequacies; second, it enriches the understanding of the effects of company intelligent transformation from the perspective of TPU. Furthermore, we also expand the analysis framework of the influencing factors and countermeasures of the perception of TPU, providing valuable insights for firms in managing the risks associated with TPU; third, in practical terms, the research assists firms in reformulate strategies for intelligent transformation to achieve “cost reduction and efficiency improvement”, thereby helping the firms to better cope with the uncertainties of trade policy and mitigate the negative impacts. On macro level, the study elucidates the essential role of intelligent transformation, enabling China to draw on its preeminent position in the field of artificial intelligence, facilitating the smooth transition of foreign trade dynamics, achieving strategic goals for stable foreign trade, and propelling high-quality development in the international trade.
宋华盛, 曹婷婷, 周建军. 在不确定性中寻找确定性:企业智能化转型能降低贸易政策不确定性感知吗?[J]. 浙江大学学报(人文社会科学版), 2025, 55(1): 5-25.
Song Huasheng, Cao Tingting, Zhou Jianjun. Seeking Certainty in Uncertainty: Could Enterprises’ Intelligent Transformation Help to Reduce the Perception of Trade Policy Uncertainty?. JOURNAL OF ZHEJIANG UNIVERSITY, 2025, 55(1): 5-25.
1 Benguria F., Choi J. & Swenson D. L. et al., “Anxiety or pain? the impact of tariffs and uncertainty on Chinese firms in the trade war,” Journal of International Economics, Vol. 137 (2022), https://doi.org/10.1016/j.jinteco.2022.103608. 2 司登奎、李小林、孔东民等:《贸易政策不确定性、金融市场化与企业创新型发展:兼论金融市场化协同效应》,《财贸经济》2022年第4期,第53-70页。 3 Bloom N., “Fluctuations in uncertainty,” Journal of Economic Perspectives, Vol. 28, No. 2 (2014), pp. 153-175. 4 方明月、聂辉华、阮睿等:《企业数字化转型与经济政策不确定性感知》,《金融研究》2023年第2期,第21-39页。 5 聂辉华、阮睿、沈吉:《企业不确定性感知、投资决策和金融资产配置》,《世界经济》2020年第6期,第77-98页。 6 吴义爽、盛亚、蔡宁:《基于互联网+的大规模智能定制研究——青岛红领服饰与佛山维尚家具案例》,《中国工业经济》2016年第4期,第127-143页。 7 权小锋、李闯:《智能制造与成本粘性——来自中国智能制造示范项目的准自然实验》,《经济研究》2022年第4期,第68-84页。 8 Handley K. & Lim?o N., “Policy uncertainty, trade, and welfare: theory and evidence for China and the United States,” American Economic Review, Vol. 107, No. 9 (2017), pp. 2731-2783. 9 Crowley M., Meng N. & Song H., “Tariff scares: trade policy uncertainty and foreign market entry by Chinese firms,” Journal of International Economics, Vol. 114 (2018) , pp. 96-115. 10 Davis S. J., Liu D. & Sheng X. S., “Economic policy uncertainty in China since 1949: the view from mainland newspapers,” Chicago Booth Research Paper, No. 4 (2019), https://purl.stanford.edu/sp114hw3715. 11 张成思、孙宇辰、阮睿:《经济政策不确定性、企业货币政策感知与实业投资》,《财贸经济》2023年第7期,第75-90页。 12 张成思、孙宇辰、阮睿:《宏观经济感知、货币政策与微观企业投融资行为》,《经济研究》2021年第10期,第39-55页。 13 刘贯春、张军、刘媛媛:《宏观经济环境、风险感知与政策不确定性》,《世界经济》2022年第8期,第30-56页。 14 李婉红、王帆:《智能化转型、成本粘性与企业绩效——基于传统制造企业的实证检验》,《科学学研究》2022第1期,第91-102页。 15 Liu J., Chang H. & Forrest Y. L. et al., “Influence of artificial intelligence on technological innovation: evidence from the panel data of China’s manufacturing sectors,” Technological Forecasting and Social Change, Vol. 158 (2020), https://doi.org/10.1016/j.techfore.2020.120142. 16 沈坤荣、乔刚、林剑威:《智能制造政策与中国企业高质量发展》,《数量经济技术经济研究》2024年第2期,第5-25页。 17 Ferencz J., Gonzalez J. L. & García I. O., “Artificial intelligence and international trade: some preliminary implications,” https://doi.org/10.1787/13212d3e-en, 2024-03-06. 18 刘斌、潘彤:《人工智能对制造业价值链分工的影响效应研究》,《数量经济技术经济研究》2020年第10期,第24-44页。 19 Brynjolfsson E., Hui X. & Liu M., “Does machine translation affect international trade? evidence from a large digital platform,” Management Science, Vol. 65, No. 12 (2019), pp. 5449-5460. 20 Trefler D. & Sun R., “AI, trade and creative destruction: a first look,” https://www.nber.org/papers/w29980, 2024-03-06. 21 Duong H. N., Nguyen J. H. & Nguyen M. et al., “Navigating through economic policy uncertainty: the role of corporate cash holdings,” Journal of Corporate Finance, Vol. 62 (2020), https://doi.org/10.1016/j.jcorpfin.2020.101607. 22 赵瑞丽、谭用、崔凯雯:《互联网深化、信息不确定性与企业出口平稳性》,《统计研究》2021年第7期,第32-46页。 23 祝树金、申志轩、文茜等:《经济政策不确定性与企业数字化战略:效应与机制》,《数量经济技术经济研究》2023年第5期,第24-45页。 24 张鹏杨、刘蕙嘉、张硕等:《企业数字化转型与出口供应链不确定性》,《数量经济技术经济研究》2023年第9期,第178-199页。 25 Anderson M. C., Banker R. D. & Janakiramanj S. N., “Are selling, general, and administrative costs ‘sticky’?” Journal of Accounting Research, Vol. 41, No. 1 (2003), pp. 47-63. 26 Agrawal A., Gans J. & Goldfarb A., Prediction Machines: The Simple Economics of Artificial Intelligence, Cambridge: Harvard Business Press, 2018. 27 McGuire T., Manyika J. & Chui M., “Why big data is the new competitive advantage,” https://iveybusinessjournal.com/publication/why-big-data-is-the-new-competitive-advantage/, 2024-03-06. 28 Jarrahi M. H., “Artificial intelligence and the future of work: human-AI symbiosis in organizational decision making,” Business Horizons, Vol. 61, No. 4 (2018), pp. 577-586. 29 金祥义、张文菲:《人工智能与企业出口扩张:贸易革命的技术烙印》,《国际贸易问题》2022年第9期,第70-87页。 30 Cecchini M., Aytug H. & Koehler G. J., “Making words work: using financial text as a predictor of financial events,” Decision Support Systems, Vol. 11, No. 1 (2010), pp. 164-175. 31 胡楠、薛付婧、王昊楠:《管理者短视主义影响企业长期投资吗?——基于文本分析和机器学习》,《管理世界》2021年第5期,第139-156,11,19-21页。 32 Huang Y. & Luk P., “Measuring economic policy uncertainty in China,” https://cbade.hkbu.edu.hk/wp-content/uploads/2020/08/measuring_economic_policy_uncertainty_in_china_oct_2019.pdf, 2024-06-06. 33 Loughran T. & McDonald B., “Measuring readability in financial disclosures,” The Journal of Finance, Vol. 69, No. 4 (2014), pp. 1643-1671. 34 Buchanan D. A. & Bryman A., “Contextualizing methods choice in organizational research,” Organizational Research Methods, Vol. 10, No. 3 (2007), pp. 483-501. 35 Yu F.,Wang L. & Li X., “The effects of government subsidies on new energy vehicle enterprises: the moderating role of intelligent transformation,” Energy Policy, Vol. 141 (2020), https://doi.org/10.1016/j.enpol.2020.111463. 36 Acemoglu D. & Restrepo P., “Robots and jobs: evidence from U.S. labor markets,” Journal of Political Economy, Vol. 28, No. 6 (2020), pp. 2188-2244. 37 吴非、胡慧芷、林慧妍等:《企业数字化转型与资本市场表现——来自股票流动性的经验证据》,《管理世界》2021年第7期,第130-144,10页。 38 袁淳、肖土盛、耿春晓等:《数字化转型与企业分工:专业化还是纵向一体化》,《中国工业经济》2021年第9期,第137-155页。 39 姚加权、张锟澎、郭李鹏等:《人工智能如何提升企业生产效率?——基于劳动力技能结构调整的视角》,《管理世界》2024年第2期,第101-116,117-122,133页。 40 Altonji J. G., Elder T. E. & Taber C. R., “Selection on observed and unobserved variables: assessing the effectiveness of Catholic schools,” Journal of Political Economy, Vol. 113, No. 1 (2005), pp. 151-184. 41 Goldsmith-Pinkham P., Sorkin I. & Swift H., “Bartik instruments: what, when, why, and how,” American Economic Review, Vol. 110, No. 8 (2020), pp. 2586-2624. 42 方明月、林佳妮、聂辉华:《数字化转型是否促进了企业内共同富裕?——来自中国A股上市公司的证据》,《数量经济技术经济研究》2022第11期,第50-70页。 43 方明月:《资产专用性、融资能力与企业并购——来自中国A股工业上市公司的经验证据》,《金融研究》2011年第5期,第156-170页。 44 李颖、王晓艳、伊志宏:《分析师跟踪与企业去产能——基于成本粘性视角的研究》,《宏观经济研究》2020年第5期,第145-165页。 45 潘越、戴亦一、林超群:《信息不透明、分析师关注与个股暴跌风险》,《金融研究》2011年第9期,第138-151页。 46 戴亦一、肖金利、潘越:《“乡音”能否降低公司代理成本?——基于方言视角的研究》,《经济研究》2016年第12期,第147-160,186页。 47 Qiu L. D. & Yu M., “Export scope, managerial efficiency, and trade liberalization: evidence from Chinese firms,” Journal of Behavior and Economic Organization, Vol. 177 (2020), pp. 71-90. 48 孙浦阳、侯欣裕、盛斌:《服务业开放、管理效率与企业出口》,《经济研究》2018年第7期,第136-151页。 49 孙晓华、郭旭、王昀:《政府补贴、所有权性质与企业研发决策》,《管理科学学报》2017年第6期,第18-31页。 50 李文贵、余明桂:《所有权性质、市场化进程与企业风险承担》,《中国工业经济》2012年第12期,第115-127页。 51 李雪冬、江可申、夏海力:《供给侧改革引领下双三角异质性制造业要素扭曲及生产率比较研究》,《数量经济技术经济研究》2018年第5期,第23-39页。 52 钟凯、董晓丹、彭雯等:《一叶知秋:情感语调信息具有同业溢出效应吗?——来自业绩说明会文本分析的证据》,《财经研究》2021年第9期,第48-62页。 53 Loughran T. & Mcdonald B., “When is a liability not a liability? textual analysis, dictionaries, and 10-Ks,” The Journal of Finance, Vol. 66, No. 1 (2011), pp. 35-65. 54 Fabra N. & Reguant M., “Pass-through of emissions costs in electricity markets,” American Economic Review, Vol. 104, No. 9 (2014), pp. 2872-2899. 55 Clarkson P. M., Li Y. & Pinnuck M. et al., “The valuation relevance of greenhouse gas emissions under the European Union Carbon Emissions Trading Scheme,” European Accounting Review, Vol. 35, No. 3 (2015), pp. 551-580.