How Does Digital Transformation Affect Substantial Innovation in Manufacturing: Based on the Perspectives of “Digital Empowerment” and “Digital Divide”
Xiao Xiang1, Wang Jinmei2, Dong Xiangshu2
1.School of Marxism, Central University of Finance and Economics, Beijing 100081, China 2.School of Economics, Capital University of Economics and Business, Beijing 100070, China
Abstract:Innovation is a vital driving force for China to advance from a major manufacturing country to a powerful manufacturing country. However, current research, which tends to focus on specific application scenarios in manufacturing, still needs to be further explored, such as the issues as to whether digital transformation will enable substantial innovation in manufacturing, whether the digital transformation will bring “digital dividends” or create a “digital divide”. The main conclusions of this study are as follows: (1) Digital transformation will empower substantial innovation in the manufactural field. This study, through text-mining methods, highlights the feature of “smart manufacturing” and constructs a digital transformation index. Invention patents better reflect the “qualitative change” feature of corporate innovation and are important indicators of substantial innovation. Based on the invention patents, this study also extends the measurement of substantial innovation through two dimensions of breakthrough innovation and generic innovation. Based on the construction of new indicators, empirical analyses such as fixed panels, Tobit models, Poisson models, and negative binomial models have found that the digital transformation has promoted substantial innovation in manufacturing, helping to break the current “quantity-over-quality” innovation trap in China. (2) Digital transformation empowers substantial innovation in manufacturing through channels such as increasing R&D investment, reducing corporate operating costs, enhancing supply chain discourse power, and promoting joint innovation. The inventory turnover rate in manufacturing is generally low, and the research has also found that inventory costs, an essential part of corporate operating costs, are an important channel through which the digital transformation influences corporate substantial innovation. This study further delves deeply into supply chain discourse power and finds that upstream supply chain discourse power is an important channel through which the digital transformation affects substantial innovation in manufacturing. (3) There is a “digital divide” in the contribution of digital transformation to the innovation in the manufactural field. Regionally, the impact of the digital transformation on the innovation in the manufacturing industry is more pronounced in the eastern regions and non-traditional industrial bases, exacerbating regional imbalances in the innovation to some extent. The new infrastructure and marketized regional differences are important reasons for the regional imbalance in innovation during digital transformation. The research has also found that digital transformation has a greater impact on innovation in technology-intensive industries, industries with high innovation levels, industries with high investment in industrial robots, larger-scale enterprises, and enterprises with strong risk tolerance.Compared to existing literature, the main innovations of this paper include: (1) Enriching related research on the microeconomic performance of digital transformation. After extending the measurement of digital transformation indicators and substantial corporate innovation, it is found that digital transformation is more consistent with substantive innovation in manufacturing. (2) Based on the manufacturing scenario, this paper enriches current research on how digital transformation affects innovation mechanisms. This study focuses on a more in-depth investigation of the channels through which digital transformation affects innovation, such as inventory costs and supply chain discourse power, which are closely related to manufacturing. (3) Enriching the related research on the “digital divide”. This study systematically analyzes the regional imbalance in the innovation brought about by the digital transformation and its logical formation, and it also studies the impact of corporate digital transformation on different industries and different sizes of enterprises within manufacturing.
肖翔, 王晋梅, 董香书. 数字化转型如何影响制造业实质性创新?[J]. 浙江大学学报(人文社会科学版), 2023, 53(10): 28-50.
Xiao Xiang, Wang Jinmei, Dong Xiangshu. How Does Digital Transformation Affect Substantial Innovation in Manufacturing: Based on the Perspectives of “Digital Empowerment” and “Digital Divide”. JOURNAL OF ZHEJIANG UNIVERSITY, 2023, 53(10): 28-50.
1 习近平: 《高举中国特色社会主义伟大旗帜 为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告》,北京:人民出版社,2022年。 2 中共中央宣传部、国家发展和改革委员会: 《习近平经济思想学习纲要》,北京:人民出版社、学习出版社,2022年。 3 吴非、胡慧芷、林慧妍等: 《企业数字化转型与资本市场表现——来自股票流动性的经验证据》,《管理世界》2021年第7期,第130-144,10页。 4 张叶青、陆瑶、李乐芸: 《大数据应用对中国企业市场价值的影响——来自中国上市公司年报文本分析的证据》,《经济研究》2021年第12期,第42-59页。 5 王桂军、李成明、张辉: 《产业数字化的技术创新效应》,《财经研究》2022年第9期,第139-153页。 6 张国胜、杜鹏飞、陈明明: 《数字赋能与企业技术创新——来自中国制造业的经验证据》,《当代经济科学》2021年第6期,第65-76页。 7 李雪松、党琳、赵宸宇: 《数字化转型、融入全球创新网络与创新绩效》,《中国工业经济》2022年第10期,第43-61页。 8 靳毓、文雯、何茵: 《数字化转型对企业绿色创新的影响——基于中国制造业上市公司的经验证据》,《财贸研究》2022年第7期,第69-83页。 9 Tapscott D., The Digital Economy: Promise and Peril in the Age of Networked Intelligence, New York: McGraw-Hill Press, 1996. 10 陈晓红、李杨扬、宋丽洁等: 《数字经济理论体系与研究展望》,《管理世界》2022第2期,第208-224,13-16页。 11 Goldfarb A. & Tucker C., “Digital economics,” Journal of Economic Literature, Vol. 57, No. 1 (2019), pp. 3-43. 12 Forman C. & Zeebroeck N. V., “Digital technology adoption and knowledge flows within firms: can the internet overcome geographic and technological distance?” https://www.sciencedirect.com/science/article/pii/S0048733318302592, 2023-02-08. 13 Nambisan S., Wright M. & Feldman M., “The digital transformation of innovation and entrepreneurship: progress, challenges and key themes,” https://www.sciencedirect.com/journal/research-policy/vol/48/issue/8, 2023-02-08. 14 刘洋、董久钰、魏江: 《数字创新管理:理论框架与未来研究》,《管理世界》2020年第7期,第198-217,219页。 15 Agrawal A., Mchale J. & Oettl A., “Finding needles in haystacks: artificial intelligence and recombinant growth,” https://www.nber.org/papers/w24541, 2023-02-08. 16 Nambisan S., Lyytinen K. & Majchrzak A. et al., “Digital innovation management: reinventing innovation management research in a digital world,” Mis Quarterly, Vol. 41, No. 1 (2017), pp. 223-238. 17 Brock K., Ouden E. D. & Langerak F. et al., “Front end transfers of digital innovations in a hybrid Agile-Stage-Gate setting,” Journal of Product Innovation Management, Vol. 37, No. 6 (2020), pp. 506-527. 18 黄先海、王瀚迪: 《数字产品进口、知识存量与企业数字创新》,《浙江大学学报(人文社会科学版)》2022年第2期,第28-43页。 19 Banalieva E. R. & Dhanaraj C., “Internalization theory for the digital economy,” Journal of International Business Studies, Vol. 50, No. 8 (2019), pp. 1372-1387. 20 肖土盛、吴雨珊、亓文韬: 《数字化的翅膀能否助力企业高质量发展——来自企业创新的经验证据》,《经济管理》2022年第5期,第41-62页。 21 杨金玉、彭秋萍、葛震霆: 《数字化转型的客户传染效应——供应商创新视角》,《中国工业经济》2022年第8期,第156-174页。 22 Li M. & Jia S., “Resource orchestration for innovation: the dual role of information technology,” Technology Analysis & Strategic Management, Vol. 30, No. 10 (2018), pp. 1136-1147. 23 Solow R., “We’d better watch out,” http://www.standupeconomist.com/pdf/misc/solow-computer-productivity.pdf, 2023-02-08. 24 Arvanitis S., Loukis E. N. & Diamantopoulou V., “Are ICT, workplace organization, and human capital relevant for innovation? a comparative Swiss/Greek study,” International Journal of the Economics of Business, Vol. 23, No. 3 (2016), pp. 319-349. 25 Rafols I., Hopkins M. M. & Hoekman J. et al., “Big pharma, little science? a bibliometric perspective on big pharma’s R&D decline,” Technological Forecasting & Social Change, Vol. 81, No. 1 (2014), pp. 22-38. 26 Ghasemaghaei M. & Calic G., “Assessing the impact of big data on firm innovation performance: big data is not always better data,” Journal of Business Research, Vol. 108 (2020), pp. 147-162. 27 Karhade P. P. & Dong J. Q., “Information technology investment and commercialized innovation performance: dynamic adjustment costs and curvilinear impacts,” MIS Quarterly, Vol. 45, No. 3 (2021), pp. 1007-1024. 28 刘鹤: 《把实施扩大内需战略同深化供给侧结构性改革有机结合起来》,《人民日报》2022年11月4日,第6版。 29 Lythreatis S., Singh S. K. & El-Kassar A. N., “The digital divide: a review and future research agenda,” Technological Forecasting and Social Change, Vol. 175, No. 4 (2022), https://doi.org/10.1016/j.techfore.2021.121359. 30 张勋、万广华、吴海涛: 《缩小数字鸿沟:中国特色数字金融发展》,《中国社会科学》2021年第8期,第35-51,204-205页。 31 Dewan S., Ganley D. & Kraemer K. L., “Complementarities in the diffusion of personal computers and the internet: implications for the global digital divide,” Information Systems Research, Vol. 21, No. 4 (2010), pp. 925-940. 32 董香书、王晋梅、肖翔: 《数字经济如何影响制造业企业技术创新——基于“数字鸿沟”的视角》,《经济学家》2022年第11期,第62-73页。 33 Ghasemaghaei M. & Calic G., “Does big data enhance firm innovation competency? the mediating role of data-driven insights,” Journal of Business Research, Vol. 104 (2019), pp. 69-84. 34 杨俊、李小明、黄守军: 《大数据、技术进步与经济增长——大数据作为生产要素的一个内生增长理论》,《经济研究》2022年第4期,第103-119页。 35 Shirley C. & Winston C., “Firm inventory behavior and the returns from highway infrastructure investments,” Journal of Urban Economics, Vol. 55, No. 2 (2004), pp. 398-415. 36 Kretschmer T. & Khashabi P., “Digital transformation and organization design: an integrated approach,” California Management Review, Vol. 62, No. 4 (2020), pp. 86-104. 37 Li J., Xia J. & Zajac E. J., “On the duality of political and economic stakeholder influence on firm innovation performance: theory and evidence from Chinese firms,” Strategic Management Journal, Vol. 39, No. 1 (2018), pp. 193-216. 38 Srivastava S. C. & Chandra S., “Social presence in virtual world collaboration: an uncertainty reduction perspective using a mixed methods approach,” MIS Quarterly, Vol. 42, No. 3 (2018), pp. 779-804. 39 Rosenthal S. S. & Strange W. C., “The attenuation of human capital spillovers,” Journal of Urban Economics, Vol. 64, No. 2 (2008), pp. 373-389. 40 孙早、徐远华: 《信息基础设施建设能提高中国高技术产业的创新效率吗?——基于2002—2013年高技术17个细分行业面板数据的经验分析》,《南开经济研究》2018年第2期,第72-92页。 41 David P. A., “Clio and the economics of QWERTY,” The American Economic Review, Vol. 75, No. 2 (1985), pp. 332-337. 42 黎文靖、郑曼妮: 《实质性创新还是策略性创新?——宏观产业政策对微观企业创新的影响》,《经济研究》2016年第4期,第60-73页。 43 He Z. L., Tong T. W. & Zhang Y. et al., “Constructing a Chinese patent database of listed firms in China: descriptions, lessons, and insights,” Journal of Economics & Management Strategy, Vol. 27, No. 3 (2018), pp. 579-606. 44 王永贵、李霞: 《促进还是抑制:政府研发补助对企业绿色创新绩效的影响》,《中国工业经济》2023年第2期,第131-149页。 45 徐翔、赵墨非、李涛等: 《数据要素与企业创新:基于研发竞争的视角》,《经济研究》2016年第4期,第60-73页。 46 Balsmeier B., Fleming L. & Manso G., “Independent boards and innovation,” Journal of Financial Economics, Vol. 123, No. 3 (2017), pp. 536-557. 47 Acharya V. & Xu Z., “Financial dependence and innovation: the case of public versus private firms,” Journal of Financial Economics, Vol. 124, No. 2 (2017), pp. 223-243. 48 袁淳、肖土盛、耿春晓等: 《数字化转型与企业分工:专业化还是纵向一体化》,《中国工业经济》2021年第9期,第137-155页。 49 李云鹤、蓝齐芳、吴文锋: 《客户公司数字化转型的供应链扩散机制研究》,《中国工业经济》2022第12期,第146-165页。 50 肖土盛、孙瑞琦、袁淳等: 《企业数字化转型、人力资本结构调整与劳动收入份额》,《管理世界》2022年第12期,第220-237页。 51 祁怀锦、曹修琴、刘艳霞: 《数字经济对公司治理的影响——基于信息不对称和管理者非理性行为视角》,《改革》2020年第4期,第50-64页。 52 Nunn N. & Qian N., “US food aid and civil conflict,” American Economic Review, Vol. 104, No. 6 (2014), pp. 1630-1666. 53 赵宸宇、王文春、李雪松: 《数字化转型如何影响企业全要素生产率》,《财贸经济》2021年第7期,第114-129页。 54 Lewbel A., “Constructing instruments for regressions with measurement error when no additional data are available,” Econometrica, Vol. 65, No. 5 (1997), pp. 1201-1213. 55 黄贤环、贾敏、王瑶: 《产业链中的话语权与非金融企业金融投资——基于产业链中商业信用水平的视角》,《会计研究》2022年第5期,第118-130页。 56 韩国高、陈庭富、刘田广: 《数字化转型与企业产能利用率——来自中国制造企业的经验发现》,《财经研究》2022年第9期,第154-168页。 57 樊纲、王小鲁、张立文等: 《中国各地区市场化相对进程报告》,《经济研究》2003年第3期,第9-18页。 58 连玉君、廖俊平: 《如何检验分组回归后的组间系数差异?》,《郑州航空工业管理学院学报》2017年第6期,第97-109页。 59 Coles J., Daniel N. & Naveen L., “Managerial incentives and risk-taking,” Journal of Financial Economics, Vol. 79, No. 2 (2006), pp. 431-468.